On an inequality for additive arithmetic functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Arithmetic Inequality

We obtain an arithmetic proof and a refinement of the inequality φ(n) + σk(n) < 2n , where n ≥ 2 and k ≥ 2. An application to another inequality is also provided.

متن کامل

Functional Analysis and Additive Arithmetic Functions

1. A function is arithmetic if it is defined on the positive integers. Those arithmetic functions which assume real values and satisfy f(ab)-f(a)+f(b) for mutually prime integers a, b are classically called additive. The following examples illustrate the interest of these functions, both for themselves and for their applications. An additive function is defined by its values on the prime powers...

متن کامل

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some  inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.

متن کامل

JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.

متن کامل

An Inequality for Macaulay Functions

Given integers k ≥ 1 and n ≥ 0, there is a unique way of writing n as n =

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1975

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-27-1-371-383